HYDROCARBON: SATURATED AND UNSATURATED

Hydrocarbons

[compounds containing carbon and hydrogen only]

[contains only C-C single bonds]

Examples are Methane [CH4],Ethane [C2H6] They are also called Alkanes. [contains at least one double or triple bond between two C atoms]

Alkenes (contain double (=) bond) Example Ethene [C2H4] ,Propene C3H6] Alkynes (contain triple (=) bond) [Examples Ethyne [C2H2], Propyne [C3H4]

Structures of saturated Hydrocarbons

In order to arrive at the structure of simple hydrocarbons, we need to follow two steps.

- Step 1: to link the carbon atoms together with single bond, which is called 'Carbon Skeleton'. [C-C]
- Step 2: use the hydrogen atoms to satisfy the remaining valencies of carbon.
 Example, structure of a compound ethane with formula C₂H₆ can be derived as

Similar way the structure of the compound with formula C₃H₈ (propane) can be drawn. Step 1: C-C-C (carbon skeleton)

Step 2:

These are examples of saturated hydrocarbons and normally they are not very reactive.

Structures of unsaturated hydrocarbons

Structure of C₂H₄

- Step 1: C-C (carbon skeleton)
- Step 2: each carbon atom gets two hydrogen atoms
- Step 3: still one valency per carbon atom remains unsatisfied. This can be satisfied only if there is a double bond between two carbon atoms. So we get

Structure of ethyne (C₂H₂)

Step 1:C-C (as usual)Step 2:H-C-C-H

still two valencies of each carbon atom remain unsatisfied.

Step 3: those can be satisfied **only by making a triple bond** between the two carbon atoms.

H-C≡C-H

Ethene, ethyne are examples of unsaturated hydrocarbons and they are generally more reactive than saturated carbon compounds

Here are the electron dot structures of ethane and ethene.

[Can you draw the electron dot structure of ethyne?]

ISOMERISM

<u>Important definition</u>: Carbon compounds having same molecular formula but different structural formula are called **Structural Isomers** and the phenomenon is known as **Isomerism**.

Examples: The carbon skeleton of the compound C4H10 (butane) can be represented in the following two ways:

C-C-C

C-C-C-C and

Hence, filling the remaining valencies with hydrogen we finally get two different structures.

<u>As they have same</u> <u>molecular formula but</u> <u>different structures, so</u> <u>these two are Isomers.</u>

The compound pentane (C₅H₁₂) has three isomers.

This type of isomerism is called **'Chain** isomerism'.

Structures of Cyclic hydrocarbons

- In addition to straight and branched carbon chains, some compounds have carbon atoms arranged in the form of a ring.
- Examples are : i) Cyclohexane (C6H12) [saturated cyclic hydrocarbon]
 ii) Benzene (C6H6) [unsaturated cyclic hydrocarbon]

Functional Group

- rbon seems to be very friendly element, other than hydrogen, carbon also forms bonds with other elements such as **halogens, oxygen, nitrogen and sulphur**.
- a hydrocarbon chain, one or two hydrogen can be replaced by these elements, so that the valency of carbon remains satisfied.
- ese elements are referred as 'heteroatoms', as they replace hydrogen.
- ese heteroatoms and the group containing these, confer specific properties to the compound, irrespective of the length and nature of the carbon chain and hence they are called functional groups.'

Examples of some important functional groups:

Free valency or valencies of the group are shown by single line. The functional group is attached to the carbon chain through this valency by replacing one H atom or atoms.

Hetero atom	Class of compounds	Formula of functional group
Cl/Br	Halo- (Chloro/bromo) alkane	Cl,Br (substitutes for hydrogen atom)
Oxygen	1. Alcohol	-OH
	2. Aldehyde	-C_O
	3. Ketone	-C - " O
	4. Carboxylic acid	О -С-ОН

HOMOLOGOUS SERIES

Homologous series is a group of carbon compounds having similar structures, similar chemical properties and whose successive members differ by a -CH2 group.

Examples are: Alkanes, Alkenes, Alkynes, Alcohols etc.

Members of a homologous series have/show

same elements and functional groups

🛠 same general molecular formula

- Similar chemical properties (same functional group)
- Increase in molecular weight down a series (mol wt of two adjacent members differs by 14, CH2 = 12+2 = 14)
- Gradual gradation seen in physical properties with increase in molecular weight, e.g., boiling point, solubility etc.

Examples of homologous series:

Name	General formula	First four members	Difference between two successive members
ALKANE	CnH2n+2	CH ₄ (n=1) C ₂ H ₆ (n=2) C ₃ H ₈ (n=3) C ₄ H ₁₀ (n=4)	-CH2
Alkenes	CnH2n	$C_2H_4 (n = 2)$ $C_3H_6 (n = 3)$ $C_4H_8 (n = 4)$ $C_5H_{10} (n = 5)$	-CH2
Alkynes	CnH2n-2	$C_2H_2 (n=2)$ $C_3H_4 (n=3)$ $C_4H_6 (n=4)$ $C_5H_8 (n=5)$	-CH2
Alcohols	CnH2n+1OH	CH ₃ OH (n=1) C ₂ H ₅ OH (n=2) C ₃ H ₇ OH (n=3) C ₄ H ₉ OH (n=4)	-CH2

Significance of homologous series:

- □ Helps in systematic study of organic compounds
- Predicts the properties and nature of other members of the series, if the same is known for the first few members.

Now let us try to solve some questions on homologous series:

Activity 4.2 Calculate the difference in the formulae and molecular masses for (a) CH₃OH and C₂H₅OH (b) C₂H₅OH and C₃H₇OH, and (c) C₃H₇OH and C₄H₉OH. Q. Is there any similarity in these three? Q. Arrange these alcohols in the order of increasing carbon atoms to get a family. Can we call this family a homologous series? Q. Generate the homologous series for compounds containing up to four carbons for the other functional groups given in Table 4.3. (NCERT)

Answers

Mol. formula	Difference	Mol. mass	difference
CH3OH and C ₂ H ₅ OH	CH ₂	32u and 46u	14u
C ₂ H5OH and C3H ₇ OH	CH ₂	46u and 60u	14u
C3H7OH and C4H9OH	CH ₂	60u and 74u	14u

A2. Yes. They have same functional group (-OH).

A3. CH3OH, C2H5OH, C3H7OH, C4H9OH

yes, it is a homologous series of alcohols as they have same functional group and successive members of this series differ by – CH2 unit.

A4. Try yourself

