PRACTICE QUESTIONS SET – 2 (2024-25)

MATHEMATICS

CLASS - X

Section A

Answer ALL the following Questions. Each question carries 2 marks.

- 1. Two straight paths are represented by the equations x 3y = 2 and -2x + 6y = 5. Check whether the paths cross each other or not.
- 2. State whether (x + 1)(x 2) + x = 0 has two distinct real roots. Justify your answer.
- 3. Find the roots of the quadratic equation $\frac{1}{2}x^2 \sqrt{11}x + 1 = 0$ using quadratic formula.
- 4. If 2x + y = 23 and 4x y = 19, find the value of (5y 2x) and $\left(\frac{y}{x} 2\right)$.
- 5. Find the value(s) of k so that pair of equations x + 2y = 5 and 3x + ky + 15 = 0 has a unique solution.

Section **B**

Answer ALL the following Questions. Each question carries 3 marks

- For which values of a and b will the pair of linear equations
 x + 2y = 1 and (a b)x + (a + b)y = a + b 2 has infinitely many solutions?
- 7. Solve for x and y: $\frac{x}{a} + \frac{y}{b} = a + b$, $\frac{x}{a^2} + \frac{y}{b^2} = 2$, $a, b \neq 0$.
- A train, travelling at a uniform speed for 360 km, would have taken 48 min less to travel the same distance, if its speed were 5 km/hr more. Find the original speed of the train.
- 9. Solve for x: $\frac{1}{2x-3} + \frac{1}{x-5} = 1\frac{1}{9}$, $x \neq \frac{3}{2}$, 5
- 10. If the difference of the roots of the equation $x^2 7x + 2k = 0$ is 1 then find the value of k.

Section C

Answer ALL the following Questions. Each question carries 5 marks.

 A motorboat can travel 30 km upstream and 28 km downstream in 7 hours. It can travel 21km upstream and return in 5 hours. Find the speed of boat in still water and the speed of the train.

- 12. The sum of two roots of the equation is $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c}$ is zero, then show that product of the two roots is $\left(-\frac{a^2+b^2}{2}\right)$.
- A two-digit number is obtained by either multiplying the sum of the digits by 8 and then subtracting 5 or by multiplying the difference of the digits by 16 and then adding 3.
 - a) Represent the above problem in the form of the equations in two variables x, y(considering one's place digit x and ten's place digit y, where y > x).
 - b) Hence, solve the equations graphically to find the number.

Section – D: Case Study

14. Quadratic equations are used in many real-life situations such as calculating the areas of an enclosed space, the speed of an object, the profit and loss of a product, or curving a piece of equipment for designing.

- a) If the roots of the quadratic equation are 2, -3, find the equation.
- b) If one root of a quadratic equation is $\frac{1+\sqrt{5}}{7}$, find the other root.
- c) If one root of the quadratic equation $x^2 + kx + 1 = 0$ is $\left(-\frac{1}{2}\right)$, find k.

OR

If the roots of quadratic equation $x^2 + mx + 12 = 0$ are in the ratio 1 : 3, find m.

ASSERTION REASON BASED QUESTIONS

A statement of assertion (A) is followed by a statement of Reason (R).

Choose the correct answer out of the following choices.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b)Both (A) and (R) are true and (R) is not the correct explanation of (A).
- (c) (A) is true but (R) is false.

(d)(A) is false but (R) is true.

Assertion(A): If $ac \neq 0$, then at least one of the two equations $ax^2 + bx + c = 0$ and $ax^2 + bx - c = 0$ has real and distinct roots.

Reason(**R**): A quadratic equation has real and distinct roots if the discriminant is positive.

General Guidelines:

- 1. You are advised against doing selective study.
- The questions to be given in the question paper are sample questions for practice prior to Board examination.
- 3. Although Answer keys will be provided within two/three days of posting of these questions you are advised to answer them yourself.
- 4. In case you have queries regarding a portion of the chapters being revised here you may send your query to your teacher through Chat section in MS Teams.